Ranking Small Regular Polygons by Area and by Perimeter

نویسندگان

  • P. Hansen
  • F. Messine
  • Charles Audet
  • Pierre Hansen
  • Frédéric Messine
  • Michael Mossinghoff
چکیده

From the pentagon onwards, the area of the regular convex polygon with n sides and unit diameter is greater for each odd number n than for the next even number n + 1. Moreover, from the heptagon onwards, the difference in areas decreases when n increases. Similar properties hold for the perimeter. A new proof of a result of Reinhardt follows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviour of Optimal Spectral Planar Domains with Fixed Perimeter

We consider the problem of minimizing the kth Dirichlet eigenvalue of planar domains with fixed perimeter and show that, as k goes to infinity, the optimal domain converges to the ball with the same perimeter. We also consider this problem within restricted classes of domains such as n−polygons and tiling domains, for which we show that the optimal asymptotic domain is that which maximises the ...

متن کامل

Measuring regularity of convex polygons: experimental results

We aim to evaluate to which extent the shape of a given convex polygon is close to be regular, focusing on diverse characteristics of regularity: optimal ratio area-perimeter, equality of angles and edge lengths, regular fitting, angular and areal symmetry. We have designed and implemented algorithms to compute the resulting measures and we provide and discuss experimental results on a large se...

متن کامل

On the Symplectic Volume of the Moduli Space of Spherical and Euclidean Polygons

In this paper, we study the symplectic volume of the moduli space of polygons by using Witten’s formula. We propose to use this volume as a measure for the flexibility of a polygon with fixed side-lengths. The main result of our is that among all the polygons with fixed perimeter in S or E the regular one is the most flexible and that among all the spherical polygons the regular one with side-l...

متن کامل

Scaling function for self-avoiding polygons

Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005